FYB Com from - I

Paper / Subject Code: 80910 / Mathematical & Statistical Techniques-I

FABCom

Time: 3 Hrs.

Marks: 100

N.B. (1) All questions are compulsory

- (2) Figures to the right indicate full marks
- (3) Graph papers will be provided on request
- (4) Use of simple non-programmable calculator is allowed

Q1. Attempt any four of the following.

- a) Sachin bought 120 shares at market value of Rs. 375 each and brokerage 0.4%. Calculate the sum he paid for the transaction.
- b) If the market value of a share is Rs. 120, then how many shares can be purchased for Rs. 60180 with brokerage 0.3%? (5)
- c) Priya invested Rs. 20,000 in a mutual fund with NAV Rs. 15.75, find the number of units acquired by her if,
 - i) there is no entry load ii) the entry load is 2%. (5)
- d) An investor sold 500 units of NAV Rs.230/- with exit load 2%. Find the sale value.
- e) A person invested Rs. 6888 in a mutual fund and received 44.8 units. If the entry load is 2.5%, find the NAV at the time of purchase. (5)

Q2. Attempt any four of the following.

- a) A group contains 4 boys and 5 girls, out of these a committee of 2 boys and 3 girls is to be formed, find the number of ways, this can be done if
 - i) There is no restriction on the selection.
 - ii) A particular boy is included.

(5)

- b) In how many ways the letters of the word "COMPUTER" can be arranged so as to begin with a vowel & end with a consonant. (5)
- c) Solve the above L. P. Problem graphically.

Maximize Z = 9x + 13y

Subject to

$$2x+3y \le 18$$

$$2x+y \le 10$$

$$x \ge 0, y \ge 0$$

(5)

d) Solve the above L. P. Problem graphically.

(5)

Minimize Z = 3x + 2y

Subject to

 $x+2y \ge 6$

 $2x+y \ge 6$

 $x \ge 0, y \ge 0$

Page 1 of 4

64309

- e) A toy manufacturer produces toy cars & toy planes, each of which must e processed through two machines A & B. Machine A has maximum of 120 hours available & machine B has a maximum of 180 hours available. Manufacturing a car requires 6 hours in machine A & 3 hours of machine B. Manufacturing a plane requires 4 hours in machine A & 10 hours in machine B. If profits are Rs. 45 for a car and Rs. 55 for a plane, determine the number of cars and the number of planes that should be manufactured in order to maximize the profit.
 - Formulate the above problem mathematically as a linear programming problem. (5)

SECTION II

Q3. Attempt any FOUR of the following:

a) State the merits and demerits of median

(5)

b) Calculate the mean and mode for the following data.

(5)

Age (years)	20-25 25-30 30-35 35-40 40-45 45-50
No. of Persons	10 15 15 33 5 22 8 3 10 2 10

c) The following data represents the weights of students in a class. Calculate the quartile deviation for the same (5)

Weights in kgs	30-40 40-50 50-60 60-70	70-80
No. of students	23 51 63 42	21

d) The following data gives the frequency distribution of marks of children in a society.
 Calculate the standard deviation for the given data.

Marks 0-10 10)-20 20-30	30-40	40-50
No. of children 5	8 17	7	3

e) The data given below is of marks secured by students of First year and Second year students of a College. Calculate the combine mean of the two groups.

Also find which group is more variable (5)

	Group 1	Group 2
Number	100	200
Mean	50	60
S.D.	2	3

Q.4 Attempt any FOUR of the following.

- a) Explain the concept of Mutually Exclusive and Independent event in probability. (5)
- b) $P(A^{C})= 2/3$, P(AUB)= 5/12, P(B)= 1/4, find P(A) and $P(A\cap B)$ (where A^{C} is compliment of A)
- c) Two cards are drawn from a well-shuffled pack of cards. What is the probability that (i) both are black cards (ii) one is a king card and the other is an ace card. (5)
- d) The following is the probability distribution of number of hostesses reporting ill perday. (5)

Number	0 1 2	3 4 5
Probability	0.2 0.25 0.2	0.15 0.1 0.1

Find the average number of hostesses reporting ill per day.

- e) If two fair dice are rolled, find the probability that the sum of the numbers appearing on the uppermost face of the dice is a number divisible by 3.

 (5)
- Q5. Attempt any FOUR of the following:
 - a) Explain the following terms
 i) Course of Action (ii) Pay-off Matrix
 (5)
 - b) Solve the following decision problem using i) Maximax ii) Laplace Criterion (5)

へのべく	Events - S ₁ S ₂	S ₃
1	A ₁ 20 215	23
1	A ₂ 25 10	30
1	A ₃	20

c) Determine the best decision according to EOL criterion for the following pay-off table: (5)

0	State of	Alternative			Probability
200	Nature	A	В	С	
L'and	$\langle S_1 \rangle \langle S_2 \rangle$	12	22	15	0.5
0	S_2	24	30	20	0.2
S	S_3	15	25	10	0.3

d) Given the pay-off matrix, choose the decision problem using EMV criterion.

	_	- " \ ' \ ' \ ' \ ' \ ' \ \ \ \ \ \ \ \ \
States of nature \rightarrow Action \downarrow	S_1	S_2 S_3
A_1	25	12 6 5 5 5 5 5
A_2	17	20 10
A_3	15	210 2 13
Probability(E)	0.5	0.4

e) Draw a decision tree for the pay-off table given below and suggest the type of biscuit that should be launched using EMV criterion. (5)

	Sales (in 600 Rs.)
Type of Product	High Average
Creamy biscuit	20 20 30 50
Salty biscuit	25 25 25 25 25 25 25 25 25 25 25 25 25 2
Probability(demand)	\$\tag{0.3} \tag{0.5} \tag{0.5}
0.0	